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Abstract: This paper presents an improvement in the Huber–Mises–Hencky (HMH) material effort
hypothesis proposed by Burzyński. Unlike the HMH hypothesis, it differentiates the plastic effort
between compression and tensile load states, and links shear with tensile limit. Furthermore, it
considers the fact that construction materials do not have infinite resistance in the pure tensile
hydrostatic load state, which was proved by the static load experiment performed on St12T heat-
resistant steel. The asymmetry between tensile and compressive loads is captured by the elastic region
asymmetry coefficient κ, which was established by experiment for St12T steel in the temperature
range between 20 ◦C and 800 ◦C.

Keywords: Huber–Mises–Hencky; Burzyński; effort hypotheses; strength differential (SD); St12T steel

1. Introduction

Demonstrating thermal stresses and strains is generally a complex and challenging
task. Typically, if the acceleration time is long enough transient thermal gradients are
significantly reduced keeping thermal stresses well below the yield strength. On the other
hand, in the case of steep and fluctuated loads containing rapid cooling–heating cycles, the
thermal stresses can become much higher than yield strength inducing plastic deformation.
This is particularly harmful for areas with a high stress concentration.

During the design process of a highly thermally loaded components such as com-
bustion chambers, special attention should be paid to stress–strength modelling. It is
even more important in cases such as the use of modern experimental materials, such
as sintered metals or orthotropic reinforced ceramics, because of their limited current
application. According to commonly accepted procedures in the gas turbine industry, it
is good practice to apply additional non-standard thermal-strength models. The reasons
for this approach are as follows: the first obvious purpose is the verification of standard
models that have been widely used for years. The second, less obvious reason is to improve
existing methods via the detection of phenomena which do not exist in classical materials.
In such a case, classical tools need to be upgraded or replaced to follow the progress in
materials engineering. The fluid–solid interaction approach is particularly important in
improving the accuracy of load state prediction. The following paper proposes a novel
model of the phenomena, with an emphasis on viewing strength variability as a function
of material load (effort). This approach was used to model the stress and deformation
in turbine components, and is successfully tailored to describe the physical phenomena
present in the wet combustion liner designed in the project.

Heat-resistant materials such as chromium steel, are the subject of numerous testing
campaigns aimed at improving the durability of gas turbine combustion chambers [1].
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That state has lasted for nearly 80 years to date, and is going to be extended into the future.
The growing market share of sustainable energy generators in the power system requires
flexible steam turbines that are capable of compensating for that variability. That inevitably
leads to the accumulation of many low-cycle fatigue cycles in steam turbine units, and
is associated with the wider range of operating conditions from idle to peak load, where
steam temperature can exceed 600 ◦C.

The most challenging thermal conditions occurring within the constructions used in
conventional power plants are caused by [2] thermal gradients induced by acceleration
and deceleration, tight joints restraining thermal expansion, and mechanical and thermal
low-cycle fatigue [3,4]. Steadily growing performance requirements of power plants,
in conjunction with more frequent low-cycle fatigue cycles, can lead to the early life
consumption of turbine components. Following that trend, research institutes search for
stronger and cheaper materials for critical power plant elements such as rotors and boilers
to improve their life and robustness [5].

The main objective of the presented paper is the description of stress and strain
states in highly thermally loaded materials using both the Huber–Mises–Hencky (HMH)
and Burzyński effort criteria [6–15]. The HMH approach is certainly the most commonly
employed approach to capture effort evolvement. However, the HMH method should
be limited to the materials with no tensile–compressive strength difference (kc = kt) and
no shearness difference (ks = kt/2). In any other case of heat-resistant steels, for which
κ = kc/kt = 1.12÷ 1.24, the classical Huber–Mises–Hencky hypothesis is inadequate.

As an extension of the HMH criterion, in the present paper Burzyński’s extended
hypothesis has been employed to capture the asymmetry between compressive and ten-
sile load regimes, as well as the shearness (ks 6= kt/2). This extension is also based on
an additional aspect of elastic energy, known in the literature as “the thermal energy”.
Numerical simulations include an asymmetry parameter derived from the experiment
run in several thermal conditions, which is a novel approach in such models [16,17]. This
unique method is barely present in the literature and includes an additional Burzyński
component based on the energy of volumetric deformation. Such modification of the HMH
hypothesis (from a one-parameter to a three-parameter model) makes it more robust and
applicable to a wider selection of construction materials. The intention of the authors is
to combine effort criterions used for elasto-plastic and elasto-brittle materials into one
universal approach, considering the impact of the second principal stress σ2 (that is not
included in the Tresca and Mohr hypotheses). A key conclusion to emphasize within the
power plant designer community is that, in some cases, the HMH hypothesis overestimates
the safety margin. On the other hand, Burzyński’s hypothesis makes it more realistic and
applicable for thermally loaded structures.

Generally speaking, the aim of this paper is two-fold. Firstly, it elaborates a new model
of the effort limit for heat-resistive steels. Secondly, it shows how this model behaves within
the elevated temperature range up to 800 ◦C.

Currently, due to the industrial attention paid to ceramic materials, this is a subject
of interest among the scientific community [18,19]. The for this reason is that this group
of materials has excellent functional properties, i.e., a heat and thermal gradient resis-
tance up to ultra-high temperatures (1100 ◦C). As a result of that, ceramic materials have
many potential applications in aerospace engineering, e.g., turbine blades or combustion
chambers [20,21].

2. The Material Effort Description by the Energy Approach

It is well known that a “father” of the notion of “material effort” is James Clerk
Maxwell. In general, this notion is different from the notion of “strength of material”
and only within the field of HMH models do both notions coincide (strength is just a
critical effort). Note that Maxwell introduced his concept within the frame of energy-
based approaches. In particular, in 1856, in a letter to William Thomson he introduced
the concept of “distortional energy” as a part of elastic strain energy, that is, the best
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candidate to measure material effort [2,10]. Therefore, in our numerous papers on this
subject, we differentiate two notions: “effort hypothesis”, and “strength hypothesis”. Note
that the notion of “material effort” is fully consistent with the Maxwell energy approach.
In the complete mathematical form, this energy-based approach was initiated by Beltrami
(1885) in the form [9]: Φ ≤ K, where Φ is some elastic deformation energy (precisely, the
volumetric density of energy) describing a state of material effort, and K is a critical value
of this energy. Beltrami first found that critical energy K depends on the uniaxial yield
kt or torsion ks. This approach also opened up the possibility of using many other forms
of experimental data such as: Vigers hardness, Sharpy energy, toughness critical energy,
cleavage energy, and so on (see Orłowski et al. [22,23]).

Typical energy types of the effort hypothesis can be classified as [2,17,24,25]:

• Beltrami (1885):

Φ = σijε ji = Φ
(
σij, θ

)
= Φ

(
εij, η

)
≤ K (1)

• Huber (1904):

Φ = Φv + Φ f ≤ K(tension) and Φ f ≤ K (compression) (2)

• Mises (1914) and Hencky (1924):

Φ f ≤ K (3)

• Schleicher (1926):

Φ = Φv(ν
∗) + Φ f (ν

∗) ≤ K (4)

• Burzyński (1928):

Φ = ηvΦv + Φ f ≤ K (5)

ηv = ω + δ/p (6)

• Zawadzki (1956):

Φ = Φv + Φ f + Φth ≤ K (7)

• Pęcherski (2011):

Φ = ηvΦv + η f Φ f ≤ K (8)

η f = 1 + α
[
1− e−β(1+cos (3θ)

]
(9)

In the list above, several parameters appear: the distortional strain energy Φ f , the
volumetric strain energy Φv, and the thermal strain energy Φth. These classical energies
are corrected by the influence functions ηv and η f which are a kind of factors introducing
new parameters into the criterion [12,16,26,27].

In this approach, it is important to know the value of critical energy:

K =
√

2E kt (10)

where 0.01 < K < 0.30 (as an example) for kt = 700 MPa, E = 2.1 GPa, and K = 0.23 MJ.
From the perspective of required experimental parameters, the above criteria can

be classified as: one-parameter (Beltrami, Huber, HMH), two-parameters (Schleicher),
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three-parameters (Burzyński, Zawadzki), and five-parameters (Pęcherski). Note that the
energetic approach is dedicated to the question of multi-parameter criteria in cases where
parameters represent physically different phenomena and dimensionalities. For instance,
“limiting cleavage” is, from the very beginning, given in terms of [Joule] not in terms
of [MPa]. Another example is “limiting hardness”, which is given in Brinell or Vickers
scale units. The other candidates in the multi-parameter effort hypothesis are: brittleness,
adhesiveness, gumminess, chewiness, and resilience [13,15]. If robust scientific tools
for measuring these limiting parameters can be obtained, then a general framework for
finding the principles of energy-like effort modeling, even with 15 parameters, is possible.
Therefore, our paper investigates this question from the very beginning.

2.1. The Huber Material Effort

In 1903 Huber proposed an energetic measure of equivalent stress that is based on the
energy of elastic deformation [9]:

U =
∫

Φdv =
∫

σijεijdv ≡
∫

σeqεeqdv (11)

In terms of stresses:

U =
∫

Φdv =
∫ 1

2
Cijklσijσkldv ≡

∫ 1
2E

σeqσeqdv (12)

Note that, originally, his equation for energy density was expressed by three main
strains [9], which is quite easy to decompose into distortional and volumetric parts:

Φ =
1
2

H(λ1 + λ2 + λ3)
2 +

1
3

G
[
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2
]
= Φv + Φ f (13)

where H = E/3(1− 2ν) and G = E/2(1 + ν) are the Helmholtz and Kirchhoff coefficients,
respectively. It is important that energy can be split into volumetric and distortional
(shear-like) components: Φv + Φ f , where shear energy is:

Φ f =
1

12G

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
=

= 1
2G J2s =

1
3G q2 = 3

4G τ 2
n = 1

6G σ 2
HMH

(14)

Three main stresses appear, q (distortion stress), τn (octeadric stress), and σHMH
(Huber–Mises–Hencky stress) that are well known from the literature [17,24,25]. This is
alongside another frequently used quantity, the second invariant of the deviatoric stress
tensor J2s.

Here, a key stress invariant appears for the first time [11,13,14]:

σHMH =
√

3J2s =

√
3
2

s·s (15)

q =
√

2J2s =
√

s·s (16)

τn =

√
2
3

J2s =
1√
3

√
s·s (17)

where s = σ− IσI is the stress deviator. In the Western European literature, there are

different notations for the relationship between invariants,
√

3J2s,
√

2J2s, or
√

2
3 J2s :

σi = σHMH =

√
3
2

q =
3√
2

τn (18)

σHMH > q > τn (19)
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Φ f =
1 + ν

E
J2s =

1 + ν

3E
σ2

HMH (20)

G =
E

2(1 + ν)
(21)

or in terms of the principal stresses:

J2s =
3
2

τ2
oct =

1
2

q2 =
1
3

σ2
i (22)

σi = σHMH =
√

3J2s =
1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (23)

q =
√

2J2s =
1√
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (24)

τoct = τn =

√
2
3

J2s =
1
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (25)

The names of these invariants are: “stress intensity”, “Prager intensity”, and “the
octahedral invariant”, respectively [2,3,17,25].

2.2. An Extended Burzyński Material Effort

The necessity of extension of classical HMH life limiting hypothesis was proven by the
heat resistant steels experiment. It indicated that the limit in uniaxial tension is different to
the limit in uniaxial compression, so the one-parameter HMH hypothesis must be replaced
with a two-parameter one. In general, according to the experimental data [1,4,28,29], there
are several possible limiting parameters even in the single uniaxial probe: elastic limit, yield
stress, maximum strength limit, and failure limit. In order to express the fact of generality
within the energy approach, let us denote all of these limits collectively by kt. However, in
the next section, focusing our attention only on plasticity, we replaced instances of kt with
the letter σt

e . Burzyński indicates [6,7] that seven different load regimes should be tested:
uniaxial tensile limit kt, uniaxial compression limit kc, torsional limit ks, bi-axial tensile ktt,
bi-axial compression kcc, three-axial tensile kttt, and three-axial compression kccc. Note that,
usually, four basic limits of the effort state kt are taken into consideration: elastic Re, plastic
Rpl , extremal Rm, and rupture Rz. The main motivation for extension of the one-parameter
HMH hypothesis is the well-known Duguet–Mohr hypothesis for materials with kc > kt:

(σ1 − σ3)
2 + (kc − kt)(σ1 + σ3) = kckt (26)

In 1927, using the achievement of his supervisor Huber as a starting point, young
Burzyński proposed a two-parameter extension of the Huber effort model [7]. Now, let
us revalorize his line of reasoning by adding the thermal energy term Φth, which derives
from the thermal expansion of a solid material:

W = Φ f + ηνΦv + Φth ≤ K (27)

where W is a measurement of effort (in terms of energy not stress), which is a quasi-linear
composition of Φ f , Φυ and the parameter ην, which is a function of pressure p and two
constants ω, δ:

ην = ω +
δ

3p
(28)

Equation (29) was created by inserting Equation (28) into Equation (27):

Φ f +

(
ω +

δ

3p

)
Φυ + Φth = K (29)
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which can be written in an extensive form as:

1
6G

σ 2
HMH + ω

[
1− 2ν

12G(1 + ν)
(3p)2 +

1
2

α∆T(3p)
]
+ δ

[
1− 2ν

12G(1 + ν)
(3p) +

1
2

α∆T
]
= K (30)

Next, substituting:

ω
1− 2ν

1 + v
=

1− 2ν̃

1 + ν̃
(31)

12GK =
3kckt

1 + ν̃
(32)

δ
1− 2ν

1 + ν
=

3(kc − kt)

1 + ν̃
(33)

after multiplication by 12G(1 + ν̃) the following form is obtained:

2
3 (1 + ν̃)σ 2

HMH + 3(1− 2ν̃)p2 + 3(kc − kt)p+

+6ωG(1 + ν̃)α∆T p + 2δG(1 + ν̃)α∆T = kckt
(34)

or, in brief:

2
3
(1 + ν̃)σ 2

HMH + 3(1− 2ν̃)p2 + 3(kc − kt + akt)p + b = kckt (35)

where:
3akt p + b ≡ 6ωG(1 + ν̃)α∆T p + 2δG(1 + ν̃)α∆T (36)

This means that a and b are:

a = 2
G
kt

ω(1 + ν̃)α∆T (37)

b = 2δG(1 + ν̃)α∆T (38)

In terms of kt, κ, and ν̃ our extended Burzyński hypothesis takes the following form:

2
3
(1 + ν̃)σ 2

HMH + 3(1− 2ν̃)p2 + 3kt(κ − 1 + a)p + b = kckt (39)

Another form can be obtained when the part:

2
3
(1 + ν̃)σ 2

HMH + 3(1− 2ν̃)p2 (40)

This is expressed as:

σ2
1 + σ2

2 + σ3
3 − 2ν̃(σ1σ2 + σ2σ3 + σ3σ1) (41)

Then, the extended (validated) Burzyński criterion has the form:

σ2
1 + σ2

2 + σ3
3 − 2ν̃(σ1σ2 + σ2σ3 + σ3σ1)+

+kt(κ − 1 + a)(σ1 + σ2 + σ3) + b = kckt
(42)

If a and b → 0 , then the original Burzyński formulae is obtained [7]. If a = 0 and
ν̃ = 0.5, then the other Burzyński form arises [7]. Finally, when b = 0 (meaning κ = 1) a
traditional HMH condition is formed.

3. Huber–Mises–Hencky and Burzyński Equivalent Stress

Numerical modelling in the design process needs to be applied for different structural
elements to capture the state of material effort at every critical point in a structure. Usually,
the design process assumes certain stress margins to ensure the robustness and safety of the
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final product. Strictly speaking, designers must always keep component effort below the
strength limit. Typically for steels, when kt = kc, we use the well-established one-parameter
Huber–Mises–Hencky (HMH) hypothesis to describe the effort of the given feature. In
such a case, the equivalent stress could be written using the following relationships:

σHMH =
√

3J2s =

√
3
2

s·s (43)

σHMH =
1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2 (44)

σHMH =

√
1
2

[(
σxx − σyy

)2
+
(
σyy − σzz

)2
+ (σzz − σxx)

2
]
+ 3
(

σ2
xy + σ2

yz + σ2
zx

)
(45)

where: J2s is the second invariant of the stress deviator; s is the stress deviator; σ1, σ2, and σ3
are the principal stresses of the stress tensor; and σxx, σyy, σzz, σxy, σyz, and σzx are the
normal and shear components of the stress tensor.

Burzyński understood that many materials are stronger in compressive load states
rather than a tensile ones, so he proposed an improvement to the generalised Huber–Mises–
Hencky hypothesis in the form below:

σB = 1
2κ (1−κ)

(
σxx + σyy + σzz

)
+ 1

2κ [(κ − 1)2(σxx + σyy + σzz
)2
+

+4κ[σ2
xx + σ2

yy + σ2
zz − σxxσyy − σyyσzz − σzzσxx + 3

(
σ2

xy + σ2
yz + σ2

zx

)
]]0.5 (46)

or in a shorter form:

σB =
1

2κ

[
3(κ − 1)σm +

√
9(κ − 1)2σ2

m + 4κσ2
HMH

]
(47)

where σm is the mean normal stress and κ is the coefficient of asymmetry of the elastic area,
which are determined by the following relationships:

σm =
1
3
(
σxx + σyy + σzz

)
(48)

κ =
kc

kt
≡ σc

e
σt

e
(49)

where, in turn: σt
e ≡ kt is the tensile yield limit, and σc

e ≡ kc is the compression yield limit.
These parameters ought to be figured out during static compression and tension tests.

Note that some elements of this model have recently been developed in the literature,
as in Banaś and Badur [8], where a numerical tool was prepared to extent the HMH
surface modelling (of a cylinder) into the Burzyński surface (a paraboloid). The results of
some numerical simulations alongside real experimental data have been examined in the
available papers [15,28,30–33].

4. Experimental Procedure

To verify the Burzyński effort hypothesis and evaluate the load asymmetry coefficient
(Equation (50)), experimental measurements were obtained for the tensile and compressive
limits. That approach is an improvement of the classic Huber–Mises–Hencky hypothesis,
which assumes an equal limit in the tensile and compressive load regimes. Figure 1 presents
a set of ruptured samples made of St12T steel after the tensile limit test at 400 ◦C. The
diameter and length are 5 mm and 52 mm, respectively (excluding threads).
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The experiment is based on the Heckert EUS-20 hydraulic universal testing machine
shown in Figure 2. A test performed at an elevated temperature was undertaken with a
20 kN load and an accuracy of ±0.05 kN. The heating system contains the heating chamber
that is powered by the transformer, and equipped with a double-digit temperature control
system (PT-0102 NVO Termoprylad) and temperature gauges. The temperature gauge
accuracy is equal to±1 ◦C. The strain gauge (MTS 634 11F-24) has a measurement capability
between −2.5 mm and 5 mm, and its measurement class is equal to 0.5 (ISO 9513). The
conversion from an analogue to digital signal was achieved using the L-Card E440 converter
coupled with the Power Graph 3.3.8 software for storing and analysing data.
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The experimental procedure is as follows:

(a) Screw-in the sample inside the fastening pins.
(b) Put the fastening pins inside the mount of the testing machine.
(c) Assure that the tensile force gauge shows zero.
(d) Close the heating chamber.
(e) Insert the temperature gauge into the heating chamber.
(f) Attach the thermal screen.
(g) Set the desired temperature (with variation equal to ±5 ◦C).
(h) Preload the sample with a force no higher than 200 N, check the position of the strain

gauge arm, and attach the strain gauge.
(i) After 10 min of heating at a constant temperature, the load starts to grow at a maxi-

mum rate of 200 N/mm2 min.
(j) Once well inside the plastic stage, deformation rate is steadily increased up to

0.1 min−1 until rupture.
(k) The last step involves switching off heating, and performing data post-processing to

evaluate yield strength σt
0.2.

5. Limit Properties of the St12T Steel

The most popular heat-resistant material used in power plants is St12T steel [4,8,14–16,28].
As mentioned in the previous section, static tensile and compressive tests were made to fig-
ure out the steel limit properties that are required for further calculations. To account for
experimental variability three points were tested at a single temperature (Table 1). The only
exception is the 800 ◦C case, where a single test was completed. Table 1 contains averaged
values for each test condition:

Table 1. St12T steel mechanical properties [30].

Temperature E(T) [GPa] σt
0.2(T) [MPa] σc

0.2(T) [MPa] Rm(T) [MPa]

20 ◦C 217.9 720.3 786.0 874.3
200 ◦C 206.9 656.7 731.7 804.3
400 ◦C 193.1 608.0 666.3 728.5
600 ◦C 141.8 487.0 639.3 570.5
800 ◦C 81.3 160.0 290.0 190

Every model predicting the load and effort of power plant components ought to
contain certain material properties that are dependent on temperature: Young’s modulus
E = E(T); yield limit σe = σe(T) or offset yield limit σ0.2 = σ0.2(T) (see Figure 3); and
tensile strength Rm = Rm(T). From the perspective of the Burzyński hypothesis, the impact
of temperature on the elastic region coefficient of asymmetry (introduced by Burzyński)
should also be taken into account according to the equation below:

κ = κ(T) = σc
e (T)

σt
e(T)

(50)
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Elastic region asymmetry coefficients presented in Figure 4 were calculated according
to Equation (50) and the yield strength limits presented in Table 1.
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Figure 4. St12T steel elastic region asymmetry coefficient vs. temperature [30].

The polynomial interpolation curve presented on Figure 4 is described by Equation (51)
and is valid for the temperature range of 20 ◦C–800 ◦C. This is a convenient form of the
variable input parameter that is accepted by numerical analysis software.

κ = κ(T) = 4.1·10−9 T3 − 2.57·10−6 T2 + 4·10−4 T + 1.09 (51)

In the following sections, the method based on the measured elastic region asymmetry
coefficient (Equation (50)) will be called the vB (validated Burzyński) method.
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6. Thermal Shifts of Burzyński Plastic Regions

The Burzyński hypothesis formulates plasticity as a function of three principal stresses
(σ1, σ2, σ3) and is described by the following formula:

σ2
1 + σ2

2 + σ2
3 − 2ν̃(σ1σ2 + σ2σ3 + σ3σ1)+

+[κ(T)− 1]σt
e(T)·(σ1 + σ2 + σ3)−κ(T)·

[
σt

e(T)
]2

= 0
(52)

where: ν̃ = σc
e σt

e
2(σs

e )
2 − 1 is a coefficient of plasticity, and σs

e denotes torsional yield limit.

In the general case, the coefficient ν̃ should also be modified to account for temperature
dependency. However, ν̃ is assumed to be 0.5 to govern the plasticity of St12T steel. The
reason for this is the lack of measurements of torsional yield limit within the required
temperature range. The same simplification of ν̃ was adopted by Burzyński for brittle and
plastic materials.

The plastic limits governed by Equation (52) are plotted in Figure 5. Each surface
accounts for a temperature (Table 1), a cycle asymmetry coefficient, and a tensile yield (elas-
tic) offset [17]. The intersection curves between paraboloids and the reference plane that
contains the deviatoric stress axis σD (Figure 5) and the hydrostatic axis σm (σ1 = σ2 = σ3)
are presented in Figure 6.

Figures 5 and 6 are based on the average normal stress σm at the hydrostatic axis, and
the deviatoric stress σD on the deviator stress axis. A 3D type of chart is required to mark
the dependency between principal stresses and the deviatoric/hydrostatic axes.

The paraboloid shape of the tensile strength surfaces on Figure 5, and their cross-
section on Figure 6 reveal the dependency between temperature and the plastic evolution
of St12T steel (especially for regions of tension σ1 + σ2 + σ3 > 0). The asymmetry coefficient
κ clearly controls the shape and position of critical surfaces. It is very clear around 400 ◦C,
where peak σm stress is higher than at 200 ◦C (Figure 5). That inversion was observed for
the first time in the literature. Additionally, Figure 3 proves that a plastic region also occurs
at low temperatures (below 200 ◦C).
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7. Conclusions

The Burzyński thermal effort hypothesis was created to capture the complex cycle-
plastic behaviour of thermally loaded materials. In the presented paper, experimental
confirmation was obtained for a heat-resistant St12T steel. The quasi-static load was
applied at several thermal conditions to capture the heat-resistant steel parameters for the
20–800 ◦C range. As a result, it was found that yield limit values do not drop proportionally
with an increase in temperature. Since both compressive and tensile stresses act during
every thermal loading of a structure, important changes between the Huber–Mises–Hencky
and Burzyński methodologies can be captured.

The evolution of the plastic deformation in St12T steel (Figure 6) clearly captures the
impact of temperature on yield strength. That is particularly strong in the region of tension
(σ1 + σ2 + σ3 > 0). Temperature equal to 800 ◦C can be assumed as critical for tension, as
the tip of that paraboloid (Figure 5) is close to zero at hydrostatic axis.

In summary, the authors have proved the advantage of the Burzyński three-parameter
material effort model over the Huber–Mises–Hencky single-parameter approach. As a
result, its use is recommended in industrial applications because it properly captures the
interaction between temperature and yield surface position. One particularly valuable
outcome is the strict mathematical description of the dependency between the temperature,
shape, and position of the yield surface, which can be used in numerical simulations.
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12. Pęcherski, R.; Frąś, T. Applications of the Burzyński Hypothesis of Material Effort for Isotropic Solids. Mech. Control 2010, 29,

45–50.
13. Badur, J.; Bryk, M.; Ziółkowski, P.; Slawinski, D.; Ziółkowski, P.J.; Kornet, S.; Stajnke, M. On a Comparison of Huber-Mises-Hencky

with Burzynski-Pecherski Equivalent Stresses for Glass Body during Nonstationary Thermal Load. AIP Conf. Proc. 2017, 1822.
[CrossRef]

14. Banaszkiewicz, M.; Dudda, W. Applicability of Notch Stress-Strain Correction Methods to Low-Cycle Fatigue Life Prediction of
Turbine Rotors Subjected to Thermomechanical Loads. Acta Mech. Autom. 2018, 12, 179–185. [CrossRef]

15. Dudda, W.; Ziółkowski, P.J.; Badur, J. Validation Plastic Model with Hardening of St12t. AIP Conf. Proc. 2019, 2077, 20016.
16. Banaszkiewicz, M.; Dudda, W.; Badur, J. The Effect of Strength Differential on Material Effort and Lifetime of Steam Turbine

Rotors Under Thermo-Mechanical Load. Eng. Trans. 2019, 67, 167–184. [CrossRef]
17. Skrzypek, J.; Ganczarski, A. Mechanics of Modern Materials—Models, Anizotropy, Limit Surfaces Composite Ma-Terials, Dissipative

Processes; Cracow University of Technology: Kraków, Poland, 2013.
18. Cai, L.; He, Y.; Wang, S.; Li, Y.; Li, F. Thermal-Fluid-Solid Coupling Analysis on the Temperature and Thermal Stress Field of a

Nickel-Base Superalloy Turbine Blade. Materials 2021, 14, 3315. [CrossRef]
19. Yao, J.; Xin, B.; Gong, Y.; Cheng, G. Effect of Initial Temperature on the Microstructure and Properties of Stellite-6/Inconel 718

Functional Gradient Materials Formed by Laser Metal Deposition. Materials 2021, 14, 3609. [CrossRef] [PubMed]
20. Bolaina, C.; Teloxa, J.; Varela, C.; Sierra, F.Z. Thermomechanical Stress Distributions in a Gas Turbine Blade Under the Effect of

Cooling Flow Variations. J. Turbomach. 2013, 135. [CrossRef]
21. Beghini, M.; Bertini, L.; Santus, C.; Monelli, B.D.; Scrinzi, E.; Pieroni, N.; Giovannetti, I. High Temperature Fatigue Testing of Gas

Turbine Blades. Procedia Struct. Integr. 2017, 7, 206–213. [CrossRef]
22. Orłowski, K.; Ochrymiuk, T.; Sandak, J.; Sandak, A. Estimation of Fracture Toughness and Shear Yield Stress of Orthotropic

Materials in Cutting with Rotating Tools. Eng. Fract. Mech. 2017, 178, 433–444. [CrossRef]
23. Chuchala, D.; Sandak, J.; Orłowski, K.; Muzinski, T.; Lackowski, M.; Ochrymiuk, T. Effect of the Drying Method of Pine and

Beech Wood on Fracture Toughness and Shear Yield Stress. Materials 2020, 13, 4692. [CrossRef]
24. Yu, M.-H. Unified Strength Theory and Its Applications; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-642-62368-4.
25. Zyczkowski, M. Discontinuous Bifurcations in the Case of the Burzyński-Torre Yield Condition. Acta Mech. 1999, 132, 19–35.
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31. Dudda, W.; Ziółkowski, P.J.; Badur, J. On Burzyński Stress during Thermomechanical Loading of the Turbine Blade. In Proceedings
of the 14th International Scientific and Technical Conference: Thermal Power Plants Operation-Modernisations-Renovations,
Słok, Poland, 22–24 May 2019.

32. Badur, J.; Bryk, M. Accelerated Start-up of the Steam Turbine by Means of Controlled Cooling Steam Injection. Energy 2019, 173,
1242–1255. [CrossRef]

33. Froissart, M.; Ziółkowski, P.; Dudda, W.; Badur, J. Heat Exchange Enhancement of Jet Impingement Cooling with the Novel
Humped-Cone Heat Sink. Case Stud. Therm. Eng. 2021, 28, 101445. [CrossRef]

http://doi.org/10.1007/s11223-020-00181-y
http://doi.org/10.1007/s11003-019-00322-y
http://doi.org/10.1016/j.csite.2020.100806
http://doi.org/10.1016/j.energy.2019.02.088
http://doi.org/10.1016/j.csite.2021.101445

	Introduction 
	The Material Effort Description by the Energy Approach 
	The Huber Material Effort 
	An Extended Burzyński Material Effort 

	Huber–Mises–Hencky and Burzyński Equivalent Stress 
	Experimental Procedure 
	Limit Properties of the St12T Steel 
	Thermal Shifts of Burzyński Plastic Regions 
	Conclusions 
	References

